If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(-4k+16k^2-4(-2k^2+11k-4)=-4
We move all terms to the left:
(-4k+16k^2-4(-2k^2+11k-4)-(-4)=0
We calculate terms in parentheses: +(-4k+16k^2-4(-2k^2+11k-4)-(-4), so:We get rid of parentheses
-4k+16k^2-4(-2k^2+11k-4)-(-4
determiningTheFunctionDomain 16k^2-4(-2k^2+11k-4)-4k-(-4
We add all the numbers together, and all the variables
16k^2-4(-2k^2+11k-4)-4k
We multiply parentheses
16k^2+8k^2-44k-4k+16
We add all the numbers together, and all the variables
24k^2-48k+16
Back to the equation:
+(24k^2-48k+16)
24k^2-48k+16=0
a = 24; b = -48; c = +16;
Δ = b2-4ac
Δ = -482-4·24·16
Δ = 768
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{768}=\sqrt{256*3}=\sqrt{256}*\sqrt{3}=16\sqrt{3}$$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-48)-16\sqrt{3}}{2*24}=\frac{48-16\sqrt{3}}{48} $$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-48)+16\sqrt{3}}{2*24}=\frac{48+16\sqrt{3}}{48} $
| 6(8n-12)=168 | | (1/2)(-4k+16k^2-4(-2k^2+11k-4))=-2 | | 18=6+4w | | m-12=2184 | | (1/2)(-4k+16k^2-4(-2k^2+11k-4)=-2 | | 9(2n+6)=180 | | x+.2x=130 | | 5-5w=-9 | | 6x-7=10x-47 | | t÷18=3,330 | | x/2+15=32 | | 6k^2-12k+5=0 | | 8x-5x-5=14 | | 0.6•x=210 | | 3+6z=13=6z | | 11z=−66 | | -11z=−66 | | 0.4x+x=140 | | x+.75x=20 | | w-15=1,125 | | -24=3/8p | | x°+7x-8=0 | | x÷3=294 | | 5(x-5)=21 | | 8r+2 =23 | | 5y+5=4y−6 | | 22m=34m | | 4-8x=20-4x | | 90+5x=188 | | 3x+-4=13 | | y=80,000(1.04) | | 0=2(x^2+7x-98) |